A removable discontinuity occurs in a function when there's a point where the function is not defined, but the limit of the function exists at that point. In simpler terms, it's a "hole" in the graph of the function.
Here's a breakdown:
Definition: A function f(x) has a <a href="https://www.wikiwhat.page/kavramlar/removable%20discontinuity">removable discontinuity</a> at x = a if:
How to Identify:
"Removing" the Discontinuity: You can "remove" the discontinuity by redefining the function at the point x = a such that f(a) equals the limit of f(x) as x approaches a. This effectively "fills in" the hole in the graph. For example, if lim (x→a) f(x) = L, then you can redefine the function as:
Examples: Consider the function f(x) = (x² - 4) / (x - 2).
f(2) is undefined because the denominator becomes zero.
However, we can simplify the function: f(x) = (x - 2)(x + 2) / (x - 2) = x + 2 (for x ≠ 2).
The limit of f(x) as x approaches 2 is 4 (since lim (x→2) x + 2 = 4).
Therefore, there's a removable discontinuity at x = 2. We can "remove" it by defining a new function:
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page